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Bulk soil bacterial community structure and function
respond to long-term organic and conventional agricultural
management
Matthew G. Bakker, Torey Looft, David P. Alt, Kathleen Delate, and Cynthia A. Cambardella

Abstract: Understanding how soil microbiomes respond to management is essential to maximizing soil health.
We contrasted microbiomes in bulk soil under long-term organic and conventional management in a grain
production setting. Management category significantly impacted the relative abundances of 17% of the most
abundant taxa. Both conventional and organic management favored particular taxa, but these effects were not
reflected in summary richness and diversity indices. Management systems also lead to differences in soil edaphic
properties, including pH and nutrient status; this may have been the mechanism by which change in the pro-
karyote community was enacted. Community change between years of sampling was less pronounced, with only
6 taxa differentially abundant among years. Management category also impacted the abundance of functional
genes related to the production and consumption of greenhouse gases. Particulate methane monooxygenase
genes were more frequent in soil under organic management, while soluble methane monooxygenase genes were
more frequent in soil under conventional management in 1 of 2 years. Nitrous oxide reductase genes were
significantly less abundant in soils under second-year alfalfa than in soils under corn. This work highlights the
ability of agricultural management to enact broad rearrangements to the structure of bulk soil bacterial commu-
nities.
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Résumé : Il est essentiel de comprendre comment le microbiome des sols répond au mode de culture afin de
maximiser la santé de ces sols. Les auteurs ont comparé les microbiomes de sols en vrac soumis à une culture
biologique ou conventionnelle à long terme dans une exploitation agricole céréalière. Le type de culture avait un
impact significatif sur l’abondance relative de 17 % des taxons les plus abondants. La culture conventionnelle
comme la culture biologique favorisaient des taxons en particulier, mais ces effets ne se reflétaient pas sur le plan
des indices de richesse et de diversité. Le type de culture modifiait aussi les propriétés édaphiques du sol, dont le
pH et l’état nutritif; il pourrait s’agir d’un mécanisme par lequel les changements dans la communauté des
procaryotes sont provoqués. Les changements au sein de la communauté en fonction de l’année d’échantillonnage
étaient moins prononcés, l’abondance différentielle de 6 taxons seulement étant affectée au cours des années. Le
type de culture avait aussi un impact sur l’abondance de gènes fonctionnels liés à la production et à la consom-
mation des gaz à effet de serre. Des gènes codant la méthane monooxygénase particulaire étaient plus fréquents
dans le sol traité de façon biologique, alors que les gènes codant la méthane monooxygénase soluble étaient plus
fréquents dans le sol traité de manière conventionnelle pendant une année sur deux. Les gènes codant la réductase
d’acide nitreux étaient significativement moins abondants dans les sols cultivés pour une deuxième année avec de
la luzerne comparativement à des sols cultivés avec du maïs. Ce travail met en lumière la capacité des pratiques
agricoles de provoquer d’importants changements dans la structure des communautés bactériennes des sols en
vrac. [Traduit par la Rédaction]

Mots-clés : microbiome du sol, séquençage d’amplicons, rotation des cultures, agriculture biologique.
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Introduction
The activities of soil microorganisms undergird many

of the ecological and biogeochemical processes by which
agroecosystem functioning impacts sustainability-related
concerns, such as nutrient loading to surface waters or
the exchange of greenhouse gases with the atmosphere.
Soil microorganisms are ultimately responsible for the
transformation of fresh inputs of plant residues into sta-
bilized soil organic matter. Soil microbial communities
foster carbon sequestration and actively cycle nitrogen
and other nutrients that are critical for crop production.
Given the large portion of the Earth’s surface under ac-
tive agricultural management, it is thus essential that we
understand how agricultural management influences
soil microbial communities, in terms of both structure
(i.e., which taxa are present, and how abundant are
they?) and function (i.e., what processes are these mi-
crobes able to carry out?).

Several recent reports have indicated that agricultural
management can shift the functional activity of soil mi-
crobiomes. Using a microarray technique, Xue et al.
(2013) demonstrated that low-input agricultural manage-
ment practices can significantly increase microbial func-
tional gene diversity related to nutrient cycling, even if
rotation system is held constant. Using a microcosm ex-
periment with soils from vegetable production systems,
Bonanomi et al. (2016) showed that the soil microbiomes
under long-term organic management exhibited greater
functionality, measured as rate of wood decay, than un-
der conventional management. Similarly, crop rota-
tional diversity has been shown to impact the rate of
microbial processing of fresh residues (McDaniel et al.
2014).

Among the diverse and vital functions performed by
soil microbial communities in agroecosystems are many
chemical transformations related to the biogeochemical
cycling of greenhouse gases. Understanding the impacts
of agroecosystem management decisions on microbial
functions connected to greenhouse gas fluxes from soils
is particularly relevant to efforts aimed at estimating the
potential for agricultural lands to mitigate emissions
from other sectors of the economy (Chambers et al.
2016). Beyond carbon dioxide, nitrous oxide and meth-
ane are among the principal greenhouse gasses that can
be exchanged by agroecosystems. Because the mecha-
nisms of biological transformation of nitrous oxide and
methane are well-understood, it is possible to directly
monitor the abundance of genes whose products are re-
sponsible for particular chemical transformations (Holmes
et al. 1995; Fuse et al. 1998; Costello and Lidstrom 1999;
Jones et al. 2013). Although gene abundances are re-
moved by some distance from actual process rates, as-
sessing functional gene abundances has proven useful,
for example, in modeling biogeochemical processes (Li
et al. 2017). Thus, we are able to ask whether agricultural
land management shifts microbial functions that may

not be the deliberate target of management, but that
nonetheless carry important ramifications for sustain-
ability.

Reductionist approaches that isolate the effects of in-
dividual land management practices on soil microbial
communities are powerful tools for revealing drivers
and mechanisms underlying microbial community
change. However, contrasts at the scale of whole systems
can provide complementary insights and ultimately are
required to account for complex interactions among
multiple drivers and emergent outcomes from simulta-
neously acting mechanistic forces. Furthermore, land
managers often adopt a suite of management practices
as an integrated bundle (Drinkwater 2016). For instance,
many farmers who use winter cover crops also manage
without tillage. Similarly, farmers aiming for certified
organic products are restricted from using chemical in-
puts, are required to employ more complex or extended
rotations, and are likely to make use of organic amend-
ments such as compost. While comparisons made at the
systems level make it difficult to tie observed differences
to a precise mechanism, the systems contrast can be in-
formative in revealing the cumulative or integrated ef-
fects of a suite of related management practices (Brandt
et al. 2010).

Our objective in this work was to contrast the effects
of organic and conventionally managed corn- and
soybean-based cropping systems on the structure of soil
prokaryote communities and on functional potential re-
lated to the cycling of greenhouse gases. We hypothe-
sized that long-term management impacts would be
measurable as differences in the composition and struc-
ture of the bulk soil microbiome and in the abundances
of functional genes of interest.

Materials and methods

Field experiment
The field site is located on an Iowa State University

research farm near Greenfield, Iowa, USA (lat 41.28,
long 94.45). Samples were collected from a long-term
experiment, managed continuously since 1998, on an ap-
proximately 7 ha ridge top field with uniform slopes of
0%–2%. The predominant soil at the site is a moderately
well-drained Chernozem (U.S. soil taxonomy: Macksburg
silty clay loam; fine, smectitic, mesic Aquic Argiudoll).
Cropping system treatments represent typical crop rota-
tions planted by conventional and organic farmers in
the region, and consist of a conventionally managed
corn (Zea mays) – soybean (Glycine max) rotation (C–S), an
organically managed rotation of corn–soybean–oats
(Avena sativa) with alfalfa (Medicago sativa) (C–S–O/A), and
an organic corn–soybean–oats with alfalfa–alfalfa rota-
tion (C–S–O/A–A). In the organic treatments, a rye (Secale
cereale) cover crop is planted between the corn and soy-
bean phase (October–April) to aid in weed management,
per local organic practices. All phases of each rotation
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are grown every year and all treatments are replicated 4
times. Plots (43 m × 21 m) were assigned to cropping treat-
ments in a completely randomized design.

Crop varieties are identical between conventional and
organic systems and are selected each year based on in-
put from an Advisory Committee regarding the most
useful traits for high yields and pest resistance. Planting
dates are identical for organic and conventional plots,
and farm-sized equipment is used for plot management.
Conventional management followed Iowa State Univer-
sity recommendations for fertilization (32% urea and am-
monium nitrate applied at 160 kg N/ha) and pre- and
post-planting herbicide application. Organic manage-
ment practices are certified as such by the Iowa Depart-
ment of Agriculture and Land Stewardship Organic
Program. Organic fertilization used composted chicken
manure, supplying similar nitrogen input rates as in the
conventional system. Weed management via rotary hoe-
ing and cultivation averages 4 cultivation passes per sea-
son in the organic system. Additional details on this
long-term experiment have been reported previously
(Delate et al. 2013).

Sample collection and processing
We collected soil samples from the field experiment in

each of 2 successive years (21 October 2014 and 21 October
2015). Soil samples were collected at the end of the grow-
ing season to minimize variation in soil properties asso-
ciated with management activities. Corn, oats, and
soybeans were senescent, while alfalfa remained alive.
For each soil collection, 5 soil cores (32 mm diameter,
15 cm depth) were collected from inter-row locations
across the plot, combined to produce 1 composite soil
sample per plot, transported on ice to the laboratory, and
stored at 4 °C prior to processing. As described by Delate
et al. (2013), standard methods for soil analysis were uti-
lized to measure aggregate stability, bulk density, pH,
and the content of organic carbon, nitrogen (total, inor-
ganic, NH4, NO3, potentially mineralizable), potassium,
phosphorus, microbial biomass carbon and nitrogen,
particulate organic matter, electrical conductivity, cal-
cium, and magnesium.

On the same dates, a second sample set was collected
for microbiome profiling (collected separately to allow
for more rapid freezing of samples). For this purpose,
surface residue was cleared from a location midway be-
tween the crop row and the center of the inter-row and
an 18-mm-diameter soil core was collected to a 15 cm
depth. Three subsamples were collected per plot and
were retained individually (9 crop-by-rotation combina-
tions × 4 replicate plots × 3 subsamples per plot = 108 soil
cores per year). Soil cores were bagged and transported
on ice to the laboratory, where they were stored at −20 °C
and were processed for DNA extraction within 8 weeks.
Prior to DNA extraction, soil samples were mixed indi-
vidually by hand to homogenize. The PowerLyzer Power-
Soil DNA Isolation kit (MO BIO) was used to isolate DNA

from soil. Duplicate extractions, each using 250 mg of
soil, were processed per soil core and pooled.

Amplicon library preparation and sequencing
We used polymerase chain reaction (PCR) to generate

amplicons of ribosomal RNA genes from prokaryotes for
high-throughput sequencing. We used primers F515 and
R806 (Caporaso et al. 2011) to amplify the V4 hypervari-
able region of the 16S rRNA gene. Primers were modified
with 5= overhangs for compatibility with the MiSeq se-
quencer and to provide sample-specific barcode indices,
as in Kozich et al. (2013).

Components of the PCR solution included 1.25 U of Taq
polymerase with associated reaction buffer (Invitrogen),
dNTPs at 200 nmol/L final concentration, forward and
reverse primers (1 �mol/L each), 2 �L of template DNA,
and nuclease-free water to a total volume of 50 �L per
reaction. Thermocycling consisted of 95 °C for 2 min;
31 cycles of 95 °C for 20 s, 60 °C for 15 s, and 72 °C for 1 min;
and final extension at 72 °C for 10 min. Successful ampli-
fication was confirmed by agarose gel electrophoresis
and visualization with ethidium bromide staining. Clean
up of PCR products and normalization of per sample
contribution to the pooled library was performed simul-
taneously, using the SequalPrep Normalization kit (Invit-
rogen). Amplicon concentration in the pooled libraries
was assessed using a qPCR Library Quantification kit
(KAPA Biosciences). Determination of average fragment
size and final library quality assessment was performed
using the TapeStation instrument (Agilent Technologies).

A bacterial mock community control sample (Allen
et al. 2016) was processed in triplicate from the PCR
stage. Negative control samples were processed from the
DNA extraction step forward (i.e., as DNA extractions
performed in the absence of soil). Negative controls are
useful for assessing whether contaminated laboratory
reagents may have contributed observations of taxa not
found in the biological samples.

Amplicon sequencing was performed on the MiSeq
instrument using version 3 reagent kits (Illumina), at the
National Animal Disease Center of the USDA Agricul-
tural Research Service (Ames, Iowa). PhiX phage DNA was
included with each library to increase sequence diversity
as required for best performance by the MiSeq instru-
ment. Separate runs were performed for the samples
from 2014 and for the samples from 2015. Reads were
split by index barcode using default settings on the
MiSeq instrument, and data was exported in .fastq file
format. Amplicon sequence data have been deposited at
the NCBI sequence read archive as study SRP097709.

Processing of amplicon sequences
Sequence data processing was performed using the

software Mothur version 1.39.5 (Schloss et al. 2009), VSearch
version 2.7.1 (Rognes et al. 2016), and R version 3.2.3 (R Core
Team 2015).
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Because of the relatively short length of our amplicon,
we were able to use fully overlapping sequences to form
contigs, which significantly improves data quality com-
pared with contigs that do not fully overlap (Kozich et al.
2013). Contigs were culled if they contained any ambigu-
ous bases or homopolymers longer than 15 nt or if they
were shorter than 100 nt in length. Reads passing these
criteria were aligned to the Silva reference alignment
(version 132; Quast et al. 2013). Poorly aligning reads were
culled, reads were screened to a consistent amplicon,
and reads differing by up to 2 bp were preclustered. Chi-
meras were detected using VSearch, with the reference
set sequentially to self and then to the classification da-
tabase, and were removed.

Remaining reads were classified against the Silva
nonredundant database (version 132) using the Bayesian
classifier (Wang et al. 2007) implemented in Mothur,
with a confidence threshold of 80%. Reads identified as
mitochondria or chloroplast or that could not be as-
signed below the rank of Bacteria were culled. Reads were
binned into operational taxonomic units (OTUs) using
abundance-based greedy clustering (VSearch), at a cutoff
dissimilarity of 0.03. Singletons (OTUs consisting of only
1 read cumulatively across all samples) were culled as
unreliable observations. The mock community and neg-
ative technical control samples were clustered and clas-
sified together with the biological samples.

A complete record of commands issued during data
processing is provided (Supplementary Material – Data
Processing1).

Quantitative PCR
From the same DNA extracts that were used for ampli-

con sequencing, we used qPCR to assess the abundance
of several microbial genes that play a role in the cycling
of methane and nitrogen — genes for particulate and
soluble methane monooxygenase enzymes (pMMO,
sMMO), and genes for nitrous oxide reductase, clade II
(NosZII). To be able to scale measures of functional gene
abundance by total prokaryote community density and
to avoid the confounding effects of variable DNA extrac-
tion efficiency among samples, we also measured total
16S ribosomal RNA (rRNA) gene copy number. Primers
and thermocycling conditions for each assay are pro-
vided in Supplementary Table S11.

All qPCR reactions consisted of iQ SYBR Green Super-
mix (BioRad), primers at a final concentration of 1 �mol/L
each, 2 �L of template DNA, and nuclease-free water to a
total volume of 25 �L. Each qPCR run included a standard
curve of known quantity, spanning 5 orders of magni-
tude and run in triplicate. For the pMMO and sMMO
assays, standard curves of known copy number were pre-
pared from synthesized DNA (matching GenBank acces-

sion No. AF150785.1, and positions 353–715 of AJ458523.1;
Invitrogen GeneArt Strings). For the NosZII assay, a stan-
dard curve was prepared from plasmid DNA containing
the amplicon of interest from Geobacillus thermodenitrificans
ATCC 29492. Specifically, the NosZII amplicon was gen-
erated by PCR and cloned into chemically competent
Escherichia coli using the TOPO TA cloning kit (Invitrogen).
Plasmid DNA was isolated from an overnight culture of
the resulting clone, and copy number was calculated
from concentration, based on the size of the plasmid and
the size of the insert. For the 16S rRNA gene assay,
genomic DNA was extracted from 109 cells of an over-
night culture of E. coli and serially diluted. Seven copies
of the 16S rRNA gene per E. coli cell was assumed
(Stoddard et al. 2015).

Each qPCR run also included controls with no tem-
plate. In the 16S rRNA gene assay, the no template con-
trols did eventually amplify, apparently due to trace
amounts of background contamination. However, Ct val-
ues for the no template controls were always >10 cycles
after the sample with the lowest concentration, and so
this amplification was disregarded as negligible.

Statistical analyses
In processing OTU tables, we subtracted the number of

reads observed for each OTU in the negative control (per
year, means across three technical replicates, rounded
up) from each biological sample. Sampling effort was
standardized to 1000 reads per sample (13 samples with
fewer than 1000 reads were dropped) via rarefying obser-
vations. Finally, OTU abundances were averaged across
soil cores drawn from the same plot and means were
rounded to the nearest integer. OTU abundance data that
are presented here always represent mean values across
subsamples (i.e., microbiome profiles at the plot scale).

In assessing OTU diversity, the exponential of the
Shannon diversity metric was used to estimate �-diversities as
effective species numbers (“Hill’s index”; Hill et al. 2003).
For assessments of phylogenetic diversity and UniFrac
distances (Lozupone and Knight 2005), we used Clearcut
(Sheneman et al. 2006) to generate a rough phylogenetic
tree, using 1 representative sequence per OTU (selected
based on abundance of sequence variants within each
OTU) and the mean abundance of each OTU at the plot
scale.

For visualization and contrasts of taxon relative abun-
dance among management categories, we first dropped
OTUs present at a mean relative abundance of <0.1%
and transformed the OTU abundance tables using the
centred log-ratio (CLR) method (Gloor and Reid 2016).
CLR-transformed values express the abundance of a
given taxon relative to all others in the data set (as is
appropriate for compositional data) and were used to

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjm-
2018-0134.
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generate principal component (function prcomp) bi-plots
for visualization. Taxa differing significantly in relative
abundance between categories of land management
were identified via ALDEx (ANOVA-Like Differential Ex-
pression; Fernandes et al. 2013). Only those OTUs differ-
ing significantly between land management categories
were displayed on the bi-plots (ALDEx with either the
Welch or the Wilcox test; corrected P value < 0.05). We
also used the envfit function of the Vegan package for R
(Oksanen et al. 2016) to test relationships between soil
edaphic characteristics and the principal component or-
dinations derived from prokaryote community struc-
ture, via permutation test.

The betadisper function (Vegan) was used to perform a
principal coordinates ordination on Bray–Curtis dissim-
ilarities, to estimate the mean distance-to-centroid by
grouping factor, and to assess significance via permuta-
tion test. To assess whether differences between manage-
ment categories could be attributed to common or to
uncommon taxa, we used the variably weighted Odum
dissimilarity index, which is related to the Bray–Curtis
index but can be tuned to increase or decrease taxon
weights, according to abundance, in assessing pairwise
community similarities (Manter and Bakker 2015). Per-
mutational multivariate analysis of variance (ANOVA)
(function adonis in Vegan) was used to assess the impacts
of year and management category on prokaryote com-
munity structure. The R package ggplot2 (Wickham
2009) and the hierarchical data visualization tool Krona
(Ondov et al. 2011) were used in preparation of figures.

For qPCR data, fluorescence values were converted to
copy numbers based on the standard curve for each
assay. For each functional gene target, copy numbers
were expressed per 109 copies 16S rRNA and then log-
transformed. Differences in functional gene abundances
were assessed with ANOVA, using additive models in-
cluding either year and management category, or year
and rotation system. The Tukey method was used for
post-hoc contrasts.

Results

Profiling of bulk soil microbiomes
Our sequencing effort yielded 10.6 million reads pass-

ing quality screening, divided among 27 461 OTUs. Of
these, 26 OTUs were found only in the mock community
samples, and 6 OTUs were found only in the negative
controls. Subtracting observations in negative control
samples from the biological samples resulted in the loss
of 26 OTUs; 19 124 OTUs were lost with rarefication, and
5689 OTUs were lost when mean values across sub-
samples were rounded down to zero. Of the remaining
2590 OTUs, the majority were very rare; just 157 OTUs
were present at a mean relative abundance of >0.1% of
sequence reads.

Inclusion of bacterial mock community control
samples demonstrated a low error rate and accurate clas-

sification of OTUs (Supplementary Material — Mock
Community1). Based on the known 16S rRNA gene se-
quences for the members of the mock community, the
per nucleotide error rate in our processed amplicon se-
quence data was 0.014%.

With slight variations in order of relative abundance
between years, the dominant phyla present at our field
site were Acidobacteria, Verrucomicrobia, Proteobacteria,
Thaumarchaeota, Actinobacteria, Chloroflexi, Planctomycetes,
Bacteroidetes, Armatimonadetes, Firmicutes, Gemmatimonadetes,
and Latescibacteria (Fig. 1). Additional phyla were detected
at low relative abundances; a complete list of observed
prokaryote OTUs is provided (Supplementary Table S21).

Year of sampling discriminated poorly among ob-
served community profiles, and the relative abundances
of just 6 OTUs differed significantly among years (Supple-
mentary Fig. S11). At coarser taxonomic ranks, 3 phyla
(Gemmatimonadetes, Proteobacteria, and Thaumarchaeota)
and 3 classes (Acidobacteria subgroup 6, Actinobacteria, and
Alphaproteobacteria) differed in relative abundance be-
tween years (Fig. 1).

Contrasting effects of conventional and organic
management

Prokaryote communities could be readily distin-
guished by management category along axis 1 of a prin-
cipal component ordination (Fig. 2), which explained
14.3% of the variance. Seven OTUs were significantly en-
riched in bulk soils under conventional management,
while 19 OTUs were significantly enriched in bulk soils
under organic management (Table 1; Fig. 2; ALDEx;
P < 0.05). The OTUs that differed significantly in relative
abundance tended to belong to phyla that are typically
considered free-living bulk soil inhabitants and not
phyla that are commonly found as plant-associated. For
instance, one quarter of the abundant OTUs within the
phylum Acidobacteria differed significantly in relative
abundance among management categories (9 of 36),
while only 1 of the 21 common Actinobacteria OTUs dif-
fered between management categories (Table 1). It is
notable that in some cases OTUs with the same classifi-
cation responded oppositely to management; for in-
stance, 1 OTU within each of Acidobacteria subgroup 6,
Chitinophagaceae, and Sphingomonas were enriched by con-
ventional management, while different OTUs within the
same taxa were enriched by organic management (Fig. 2).
Aggregated at broader taxonomic ranks, the relative
abundances of 1 phylum and of 4 classes differed signif-
icantly in relative abundance between conventional and
organic management (Fig. 1).

A number of soil edaphic characteristics showed sig-
nificant relationships with prokaryote community struc-
ture. In general, prokaryote communities of soils under
organic management experienced higher nutrient status
(potassium, phosphorus, potentially mineralizable ni-
trogen) and higher pH, compared with soils under
conventional management (Fig. 2). Notably, inorganic

Bakker et al. 905

Published by NRC Research Press



www.manaraa.com

Fig. 1. Taxonomic summary of bulk soil prokaryote communities at a field site in Iowa, USA. Shown is the simple proportion
of reads in each phylum (inner ring) and class (outer ring), across years and management categories. Phyla and classes for
which relative abundance differed significantly between years or between management categories (ALDEx, P < 0.05) are
labeled in red, and corresponding box plots are shown below. Boxplots indicate median, first, and third quartiles. Whiskers
extend up to 1.5 times the interquartile range. Con, conventional agricultural management; Org, organic agricultural
management.
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Fig. 2. A principal component ordination of soil prokaryote community structure, with samples colour-coded by management
category. Underlying data are the transformed counts (centred log-ratio method) of partial 16S rRNA gene sequences for operational
taxonomic units (OTUs) present at a mean relative abundance across samples of >0.1%. Taxon names and blue vectors are shown
only for those OTUs whose relative abundances were significantly impacted by management (ALDEx; P < 0.05). Black vectors reflect
soil edaphic parameters with significant fit to the ordination (permutation test; P < 0.05). BD, bulk density (g/cm3); Ca, calcium
content (mg/kg); EC, electrical conductivity (�S/cm); InorgN, inorganic nitrogen content (mg/kg); K, potassium content (mg/kg);
MBC, microbial biomass carbon (mg/kg); Mg, magnesium content (mg/kg); NO3, nitrate content (mg/kg); P, phosphorus content (mg/kg);
pH, potential hydrogen; PMINN, potentially mineralizable nitrogen (mg/kg); SOC, soil organic carbon (�g/g); TN, total nitrogen (�g/g).
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Table 1. Abundant operational taxonomic units (OTUs) (mean relative
abundance > 0.1%, across treatments and years) whose relative abundance
was significantly impacted by agricultural management system, summa-
rized at the rank of phylum.

No. enriched in:

Division Phylum
No. of abundant
OTUs Conventional Organic

Archaea Thaumarchaeota 6 1 0
Bacteria Acidobacteria 36 1 8

Actinobacteria 21 0 1
Armatimonadetes 5 0 1
Bacteroidetes 10 1 1
BRC1 1 0 0
Chloroflexi 15 0 0
Firmicutes 2 0 0
Gemmatimonadetes 2 0 0
Latescibacteria 1 0 1
Nitrospirae 3 0 1
Planctomycetes 12 1 1
Proteobacteria 21 1 3
Rokubacteria 2 0 0
Verrucomicrobia 20 2 2

Sum 157 7 19
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nitrogen availability differed primarily among years (i.e.,
fitting with the second principal component axis; Sup-
plementary Fig. S11).

Despite the ready ability to distinguish soil micro-
biomes exposed to conventional vs. organic manage-
ment, via ordination on community profiles, summary
measures such as richness and diversity indices did not
capture this difference; neither year of sampling nor
management category were significant factors in ex-
plaining prokaryote OTU richness or diversity (data not
shown; t tests, P > 0.05). Neither did �-diversity (vari-
ability in community structure among samples) differ
between management categories (data not shown;
permutation test, P = 0.46 for Bray–Curtis dissimilarities;
P = 0.60 for weighted UniFrac distances).

Increasing the influence of abundant taxa on an ad-
justably weighted dissimilarity index decreased the sig-
nificance of both year of sampling and of management
category as explanatory factors for variability among
samples (Fig. 3). Thus, impacts on less common taxa were
an important component of the changes brought about
to bulk soil microbiomes by contrasting agricultural
management practices.

Frequencies of genes related to methane oxidation and
nitrous oxide reduction

pMMO genes were present at higher frequencies (rela-
tive to overall 16S rRNA gene copy number) in soils under
organic management than under conventional manage-
ment (Fig. 4; t tests, P < 0.001 in each year). This differ-
ence remained when contrasts were limited to a given
crop species (i.e., organic vs. conventional corn; organic
vs. conventional soybeans; t tests, P < 0.0025). Within
individual rotation systems, the pMMO gene frequencies
sometimes differed among crop species. Specifically,
pMMO gene frequencies were significantly lower for oats
with alfalfa than for corn or soybean in the 3-year or-
ganic rotation in 2014, and were lower for alfalfa than for
corn in the 4-year organic rotation in 2015 (ANOVA with
Tukey contrasts, P < 0.05; data not shown). This makes
the overall contrast between management systems even
more notable; the organic system includes rotation crops
that tend to lower pMMO gene frequencies, yet main-
tains an overall average higher pMMO gene frequency
compared with the conventional system.

Soluble methane monooxygenase gene (sMMO) fre-
quencies were less sensitive to management impacts. In
2014, conventional management supported higher sMMO
gene frequencies compared with organic management
(Fig. 4; t test, P = 0.015). However, within individual crop
species, this difference held only for soybean (P = 0.024)
but not for corn (P = 0.41). Management systems did not
differ in sMMO gene frequencies in 2015 (Fig. 4; P = 0.48)
and crop species within individual rotation systems did
not differ for sMMO gene frequencies in either year (data
not shown).

Nitrous oxide reductase gene frequencies did not dif-
fer significantly between land management categories
(P > 0.1; data not shown), but did vary with plant cover; in
2014, NosZII genes were significantly less abundant in
plots growing second-year alfalfa, compared with plots
growing corn (Fig. 5; ANOVA with Tukey contrasts,
P = 0.046) or, with weaker support, soybean (P = 0.067).
However, NosZII gene densities were highly variable
among the 4 plots in second-year alfalfa, suggesting that
these differences should be more robustly tested. Rela-
tionships between NosZII gene frequencies and soil
nitrate concentrations were not significant (2014, R2 =
0.094, P = 0.068; 2015, R2 = 0.0042, P = 0.71), and soil
nitrate concentrations were not at their lowest under
second-year alfalfa, being still lower under the previous
oats–alfalfa bi-culture phase of the rotation (in 2014,
mean soil nitrate concentrations were 1.32 ± 0.13 mg
NO3/kg soil under oats–alfalfa, 2.22 ± 0.31 for alfalfa,
3.86 ± 0.28 for corn, 3.85 ± 0.31 for soybean).

Discussion
We have demonstrated that agricultural management

can significantly impact the relative abundances of a sub-
stantial portion of the dominant members of bulk soil
bacterial communities, leading in turn to alterations in
functional potential. Our results highlight the potential
for land management decisions to influence processes
and microbial ecosystem services that are not likely to be
among the intended outcomes of management deci-
sions. For instance, in our long-term field site, organic
management consistently and significantly enriched the
frequency of particulate methane monooxygenase genes
among soil bacteria. We note that these functional gene
frequencies may not translate directly into process rates
or net fluxes. Nevertheless, with sufficient understand-
ing, agricultural management may adopt explicit aims
related to shifting the structure of soil microbiomes in
advantageous directions (Bakker et al. 2012; Hartman
et al. 2018) or fostering beneficial ecosystem services
such as the net consumption of atmospheric methane.

Our experimental system could not address the mech-
anisms by which management systems influence metha-
notroph frequency. In aquatic systems, with methane
generation occurring in anoxic sediments and oxygen
diffusing from above, methanotrophs have been shown
to preferentially colonize substrates at the oxic–anoxic
boundary (Reim et al. 2012), which may suggest connec-
tions to soil bulk density or aggregate structure in our
system. However, these patterns may differ in environ-
ments, such as nonsaturated soils, in which both meth-
ane and oxygen originate primarily from the same
atmospheric source. It is possible that manure inputs to
the organic system represented an on-going immigra-
tion or input of methanotrophic taxa, as methanotrophs
are known constituents of manure and rumen environ-
ments (Mitsumori et al. 2002; Hoefman et al. 2014). The
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complexity of the soil environment offers abundant op-
portunity for niche differentiation, which may be impor-
tant to the co-existence of methanotrophic taxa once
they are brought into a common environment (Reim
et al. 2012; Bodelier et al. 2013; Ho et al. 2013).

Reduction of nitrous oxide is an important microbial
function from the perspective of climate change and
heat-trapping atmospheric gases (Melillo et al. 2014). In
this regard, our assessment of NosZII gene frequencies

demonstrates that agricultural management has the po-
tential to impact off-target microbial functions related to
environmental quality and agro-ecosystem sustainabil-
ity. However, reduction of nitrous oxide is only 1 compo-
nent of much larger nitrogen cycling pathways. More
focused investigations, including additional functional
genes as well as measuring actual process rates, will be
required to deepen our understanding of how divergent
management practices have altered nitrogen cycling in

Fig. 3. Principal coordinate ordinations and statistical tests of the significance of year of sampling and of management
category in differentiating bulk soil prokaryote communities. The underlying index of dissimilarity is the variably weighted
Odum score, which can be tuned with parameter � to give increasing influence to abundant or to rare taxa. At � = 1, this
dissimilarity index is equivalent to the commonly used Bray–Curtis index. Statistical testing used a permutational
multivariate ANOVA using dissimilarity matrices.
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this field experiment. For instance, measured NosZII
gene frequencies did not clearly relate to soil nitrogen
status. There are several possible explanations for this.
We measured soil nitrate concentrations and NosZII
gene frequencies on the same date, while a time lag be-
tween the two might be expected if NosZII gene frequen-
cies respond to nitrogen availability. Furthermore,
analyses of NosZII gene frequencies and of soil nitrogen
status were performed on separate samples, which may
have contributed to the decoupling of these variables.
Finally, our NosZII assay did not provide comprehensive
coverage of all nitrous oxide reductase genes present.
Attempts at measuring NosZ clade I gene frequencies
were stymied by poor qPCR assay performance (data not
shown).

It is interesting to note that pathways for methane
conversion and for nitrogen cycling may involve shared
enzymes. In particular, the pMMO gene is homologous to
the ammonia monooxygenase gene (Holmes et al. 1995),
and in some cases the same enzyme may be able to oxi-
dize either methane or ammonia (reviewed in Hooper
et al. 1997). Such interconnectedness between functional
gene pathways for conversion of disparate compounds
highlights the importance of striving toward more com-
prehensive profiling of the functional attributes of soil
microbial communities.

Soil microbial diversity appears to be positively re-
lated to soil functioning (Thiele-Bruhn et al. 2012; van der
Heijden and Wagg 2013) and may be an important sup-
port to agricultural productivity. A number of studies

Fig. 4. Assessment via qPCR of the frequency of particulate methane monooxygenase (pMMO) genes in (A) 2014 and (B) 2015;
and of soluble methane monooxygenase (sMMO) genes in (C) 2014 and (D) 2015. Boxplots indicate median, first and third
quartiles. Whiskers extend up to 1.5 times the interquartile range.
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have demonstrated increased density (Henneron et al.
2015) or diversity in soil bacteria (Esperschütz et al. 2007)
and fungi (Oehl et al. 2004; Sugiyama et al. 2010;
Verbruggen et al. 2010) in organically managed soils com-
pared with conventional systems. In our results, mea-
surements of taxon richness and diversity did not differ
between management systems. Another study found
that soil microbial �-diversity, or variability in commu-

nity structure across locations, was greater for organic
than conventionally managed soils (Lupatini et al. 2017).
Again, this effect was not evident in our system.

These contrasts with other findings highlight the im-
portance of continued study of how management prac-
tices influence soil microbial community structure and
functioning. Our results, in a commodity grain produc-
tion system in the upper midwestern region of the
United States, may not reflect findings from other re-
gions or agricultural production systems. Given the
breadth of soil types, climatic conditions, and cropping
systems that agriculture encompasses, it remains impor-
tant to assess the impacts of management practices on
soil microbiology in diverse locations. For instance, even
organic amendments of different chemical composition
vary in their effects on soil microbiomes (Heijboer et al.
2016). Descriptors of management systems, such as
“organic” and “conventional”, similarly encompass a
wide range of practices. The aggregate outcomes of these
broad management categories may best be revealed by
repeated contrasts in diverse geographic locations and
cropping systems, an effort to which we contribute here.

In some cases, particular component practices within
larger management systems have been linked to changes
in soil microbiomes. For instance, application of compos-
ted manure in organic management systems has been
highlighted as a factor that may explain much of the
difference in soil microbial community structure be-
tween organic and conventional management systems
(Esperschütz et al. 2007; Hartmann et al. 2015). Fungi
associated with composted manure inputs have been
shown to remain detectible in soil (Sun et al. 2016). A
study in Canada suggested that crop rotation was less
discriminative than soil pH changes in contrasts be-
tween organic and conventional management (Li et al.
2012). In extensive grain production systems with lim-
ited external inputs, organic management may lead to
reduced microbial biomass, likely as a function of lower
primary productivity (Arcand et al. 2016). A study in Brazil
suggested that tillage had a larger impact on soil micro-
biomes than other aspects of crop management (Souza
et al. 2013). Other studies have tested extreme manipula-
tions that while mechanistically instructive, are drastic
departures from agronomic production systems. For in-
stance, 2 groups have recently demonstrated enrich-
ment of oligotrophic bacterial taxa in systems that have
withheld all external fertilizer inputs from agronomic
plots for over a century (Francioli et al. 2016; Soman et al.
2017). The form and rate of fertilizer application are also
known to have measurable impacts on soil microbiomes
(Zhou et al. 2015; Francioli et al. 2016; Ding et al. 2017).

Our goal was not to tie changes in the soil microbiome
to particular mechanistic causes, but to test whether
management systems, each comprised of diverse partic-
ular decisions, result in measurably different bulk soil
microbiomes. Soil edaphic characteristics were signif-

Fig. 5. Assessment via qPCR of the frequency of nitrous
oxide reductase (clade II; NosZII) genes in (A) 2014 and
(B) 2015. Horizontal lines indicate medians. Different
letters indicate that means differ significantly (ANOVA
with Tukey contrasts; P < 0.05). ns, no significant
differences.
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icantly related to prokaryote community structure,
which is consistent with the hypothesis that impacts
of agricultural management on soil microbiomes are
mediated through changes to soil chemical and physical
properties. These inter-relationships reinforce the im-
portance of understanding the integrated impacts of
whole systems; soil microbiomes shift in response to
management practices but do so in concert with a suite
of soil properties, ranging from bulk density to pH and
organic carbon content. However, these interactions be-
tween microbiomes and soil properties should not be
conceived as 1-directional; microbes are both impacted
by soil edaphic properties (e.g., Lauber et al. 2009) and
are also capable of shifting many of those properties
(e.g., Fließbach and Mäder 2000).

The bulk soil prokaryote community profiles that we
generated contribute to our understanding of the natu-
ral history of many poorly understood taxa. Exploring
different weightings in estimating community dissimi-
larities revealed that treatment effects were not evident
when the most abundant taxa were heavily weighted in
calculating pairwise dissimilarity scores (Fig. 3). This
indicates that management-driven changes to soil
bacterial communities did not primarily occur in the
dominant taxa, and highlights the need for further char-
acterization of soil microbiota, including those taxa that
are present at moderate and low abundances.

It will be particularly powerful to begin to develop
linkages between changes in microbiome composition
or structure and microbiome functional activities. How-
ever, this long-standing challenge is not easily overcome.
For instance, we were not able to explore relationships
between methane monooxygenase gene frequencies and
the relative abundances of methanotrophic taxa, be-
cause putative methanotrophs were observed at very low
frequencies in the amplicon sequence data (1 to 8 reads
per sample; data not shown).

One of the difficulties in moving toward a predictive
understanding of how soil microbiome functional poten-
tial will respond to management is the often broad
distribution of important microbial functions across
phylogenetic lineages. For example, the capacities for
both reducing nitrous oxide and oxidizing methane are
found in diverse taxa. This allows for substantial changes
to bacterial community structure without a correspond-
ing change in functional gene frequency. For instance,
we observed significant differences in bacterial commu-
nity structure but not in NosZII gene frequencies
between plots under organic or under conventional
management. Conversely, NosZII gene frequencies dif-
fered with contemporary plant cover, without a corre-
sponding shift evident in overall bacterial community
profile. This may be explained by divergent rates of spa-
tial variation in the abundance of particular taxa com-
pared with broad-scale community change.

It is challenging to devise selective strategies for
enriching beneficial functions if the carriers of those
functions possess divergent physiologies, habitat prefer-
ences, or competitive abilities (Bakker et al. 2012). Never-
theless, it is known that legacy effects of microbial
community structure can have implications for func-
tional outcomes that can persist for years (Martiny et al.
2017) and that rhizosphere community development is
sensitive to initial bulk soil community structure (Bakker
et al. 2015).

Our ability to link microbiome structure and function
is further constrained by the necessarily limited scope of
our estimates of functional potential, which were based
on frequencies of particular genes encoding enzymes
with known activities; we could only target an infinites-
imal portion of the overall functional potential of the
soil microbiome. There are many additional functions of
great importance that are performed by soil microorgan-
isms. These include antagonizing pathogens, enhancing
access to soil nutrient pools, contributing to the develop-
ment of physical soil structure, processing of organic
materials, biotransforming toxic and xenobiotic com-
pounds, and many others.

Conclusions
Using a long-term field experiment in the Midwest re-

gion of the United States, we demonstrate that bulk soil
microbiomes change significantly in response to suites
of agricultural management in a commodity crop pro-
duction setting. Nearly 20% of the most abundant bacte-
rial taxa were significantly impacted by assignment of
plots to either organic or conventional management.
These changes accompanied broader changes to soil
edaphic properties. Changes in the abundance of func-
tional genes related to the cycling of greenhouse gases
were also evident. This work supports the validity of ef-
forts to use agricultural management to enhance benefi-
cial microbial functions.
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